

ENGINEERING PRELIMINARY & BASIC STUDIES SYLLABUS OF EXAMINATIONS 2004 EDITION

For textbook information please refer to the **Textbooks** section on page 3 of the document entitled **Information for Students and Examinations Candidates**.

PRELIMINARY EXAMINATIONS

04-Prelim-1 Calculus

Limits, continuity; differentiation, derivatives of the elementary functions (including trigonometric and exponential functions and their inverses), related rates, the mean Value Theorem, curve sketching, extremum problems, the definite integral, the Fundamental Theorem of Calculus, techniques of integration, area, volume, arc length, moments and centres of mass, parametric and polar considerations, sequences, series, Taylor series functions of several variables, partial derivatives, and applications.

04-Prelim-2 Computing

Candidates must develop familiarity with a high level programming language – one of Fortran, Pascal or C – and develop facility in writing computer programs.

Organization of stored program computers; principles of structured programming – input/output, assignment, selection and repetition, modular design using functions and procedures/subroutines, data structures including arrays and text files; design and testing of algorithms; introduction to numerical methods – curve fitting, numerical integration, root finding.

04-Prelim-3 Physics

Basic mechanics (Motion: in one and two dimensions. Conservation Laws: energy and momentum. Newton's Laws: applied to point masses. Equilibrium of point masses and rigid bodies); Waves and related subjects (simple harmonic motion, travelling waves, simple acoustics); Electricity (electric forces and fields, electrostatic potential, capacitors): Magnetism (magnetic fields, electro-magnetic induction); Circuits (simple D.C. and A.C. circuits).

04-Prelim-4 Chemistry

Stoichiometry; Chemical periodicity; Basic reaction types; Gases; Condensed phases; Chemical equilibrium; Acid-base equilibria; Thermochemistry; Entropy and chemical spontaneity; Electrochemistry; Chemical kinetics; Atomic structure and quantum theory; Chemical bonding; Solids; liquids; intermolecular forces; Organic chemistry; Nuclear chemistry.

BASIC STUDIES EXAMINATIONS COMPULSORY EXAMINATIONS

04-BS-1 Mathematics

Calculus, Vector, and Linear Algebra: Applications involving matrix algebra, determinants, eigenvalues; first and second order linear ordinary differential equations, Laplace transforms. Vector algebra; vector functions and operations; orthogonal curvilinear coordinates; applications of partial derivatives, Lagrange multipliers, multiple integrals, line and surface integrals; integral theorems (Gauss, Green, Stokes). Power series.

04-BS-2 Probability and Statistics

Concepts of probability, events and populations, probability theorems, concept of a random variable, continuous and discrete random variables, probability distributions, distributions of functions of a random variable, sampling and statistical estimation theory, hypothesis testing, simple regression analysis.

OPTIONAL EXAMINATIONS (CHOOSE SIX)

04-BS-3 Statics and Dynamics

Force vectors in two- and three-dimensions, equilibrium of a particle in two- and three-dimensions; moments and couples; equilibrium of rigid bodies in two- and three-dimensions; centroids, centres of gravity; second moment of area, moment of inertia; truss, frame and cable static analysis; friction. Planar kinematics of particles and rigid bodies; planar kinetics of particles and rigid bodies; work and energy, impulse, and momentum of particles and rigid bodies.

04-BS-4 Electric Circuits and Power

Basic laws, current, voltage, power; DC circuits, network theorems, network analysis; simple transients, AC circuits. Impedance concept, resonance; use and application of phasors and complex algebra in steady-state response; simple magnetic circuits; basic concepts and performance characteristics of transformers; an introduction to diodes and transistors; rectification and filtering; simple logic circuits.

04-BS-5 Advanced Mathematics

Series Solutions of Differential Equations: Series solutions of ordinary differential equations, boundary value problems and orthogonal functions, Fourier series.

Numerical Methods: Use of computers for numerical solution of engineering problems, including techniques involving library subroutines and spreadsheets. Approximations and errors, interpolation, systems of linear and non-linear algebraic equations, curve fitting, numerical integration and differentiation, and ordinary differential equations.

04-BS-6 Mechanics of Materials

Definitions of normal stress, shearing stress, normal strain, shearing strain; shear force and bending moment diagrams; members subjected to axial loading; members subjected to torsional loading; compound stresses, Mohr's circle; deformation of flexural and torsional members; failure theories; elastic and inelastic strength criteria; columns.

04-BS-7 Mechanics of Fluids

Fluid characteristics, dimensions and units, flow properties, and fluid properties; the fundamentals of fluid statics, engineering applications of fluid statics; the one-dimensional equations of continuity, momentum, and energy; laminar and turbulent flow, flow separation, drag and lift on immersed objects; wall friction and minor losses in closed conduit flow; flow of incompressible and compressible fluids in pipes; dimensional analysis and similitude; flow measurement methods.

04-BS-8 Digital Logic Circuits

Boolean algebra, encoders, decoders, shift registers, and asynchronous and synchronous counters together with timing considerations. Design of asynchronous circuits, synchronous sequential circuits, and finite state machines. Karnaugh mapping techniques, and state tables and diagrams. Introduction to programmable logic.

04-BS-9 Basic Electromagnetics

Introduction to the basic electromagnetic principles upon which electrical engineering is based (laws in both integral and differential form). Classical development of electrostatics and magnetostatics leading to Maxwell's equations. Application of electromagnetic theory to calculation of d-c circuit parameters, study of plane wave transmission in various media.

04-BS-10 Engineering Thermodynamics

Thermodynamic states of simple systems; the laws of thermodynamics; equilibrium, PVT and other thermodynamic diagrams; equation of state; compressibility charts and steam tables; calculation of property changes; enthalpy; applications of thermodynamics, cycles, reversibility; thermodynamics of phase changes, Gibbs phase rule, gas-vapour mixtures.

04-BS-11 Properties of Materials

Properties of materials for mechanical, thermal and electrical applications. Atomic bonding, solid solutions, crystallisation. Equilibrium phase diagrams, applications to steel and aluminium alloys, heat treatments. Structure and special properties of polymers and ceramic materials. General characteristics of metallic composites, polymeric composites and concrete. Introduction to materials in hostile environments: corrosion, creep at high temperature, refractory materials, subnormal temperature brittle fracture.

04-BS-12 Organic Chemistry

Principles of organic chemistry developed around the concepts of structure and functional groups. The main classes of organic compounds. Properties of pure substances. Introduction to molecular structure, bond types, properties, synthesis and reactions, reaction mechanisms, as a means of systematizing organic reactions.

04-BS-13 Biology

Cellular reproduction, growth, and differentiation; metabolism and bioenergetics of living cells; cell structure and function related to the material properties of plant and animal tissues; introductory microbiology — characteristics and classification of microorganisms; interactions of microorganisms with man in the natural world; kinetics and mathematical models of microbial growth; engineered biological systems such as bio-reactors, bio-instrumentation, and waste treatment systems.

04-BS-14 Geology

The structure of the earth, plate tectonics, earthquakes and igneous activity. Minerals and rocks including their formation, identification, basic properties, and classification. Processes of weathering, erosion, transport, and deposition of geological materials and their results of significance to engineering. Occurrence, flow, and quality of groundwater. Introductory aspects of structural geology including faulting, folding, and the overall formation of discontinuities and their effect on the engineering properties of rock masses. Aerial photography and geological maps.

04-BS-15 Engineering Graphics

Engineering drawing: Orthographic sketching. Standard orthographic projection. Principal views, selection and positioning of views. Visualization. Conventions and practices. First and second auxiliary views. Basic descriptive geometry. Section views, types, hatching conventions. Basic dimensioning requirements. Tolerance for fits and geometry control. Detail drawings and assembly drawings, other drawings and documents used in an engineering organization. Bill of materials. Fasteners and welds.

04-BS-16 Discrete Mathematics

Logic: propositional equivalences, predicates and quantifiers, sets, set operations, functions, sequences and summations, the growth of functions. Algorithms: complexity of algorithms, the integers and division, matrices. Methods of proof: mathematical induction, recursive definition. Basics of counting: pigeonhole principle, permutations and combinations, discrete probability. Recurrence relations: inclusion-exclusion. Relations and their properties: representing relations, equivalence relations. Introduction to graphs: graph terminology, representing graphs and graph isomorphism, connectivity, Euler and Hamilton paths. Introduction to sorting.

Revised July 2005